CENTER OF EXCELLENCE IN
COMMAND, CONTROL, COMMUNICATIONS AND INTELLIGENCE

GEORGE MASON UNIVERSITY
Fairfax, Virginia 22030

ANNUAL TECHNICAL REPORT

for the period

1 July 1994 - 30 June 1995

for

ADAPTIVE DECISION MAKING AND COORDINATION
IN
VARIABLE STRUCTURE ORGANIZATIONS

Grant Number N00014-93-1-0912

Submitted to v Submitted by:
Dr. W. S. Vaughan, Jr. (3 copies)
Office of Naval Research
800 North Quincy Street Alexander H. Levis
Arlington, Virginia 22217-5000 Principal Investigator
Copies to: _
Director, Naval Research Laboratory August, 1995

Administrative Grants Office, ONR
Defense Technical Information Center Report #: GMU/C31-161-IR

19950825 089

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information 1s estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and compieting and reviewing the collection of information. Send comments re?ardmg this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Artington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 1995 Technical Report T7/1/94 - 6/30/95

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

ADAPTIVE DECISION MAKING AND COORDINATION IN
VARIABLE STRUCTURE ORGANIZATIONS

6. AUTHOR(S)
Alexander H. Levis, Didier M. Perdu, Abbas K. Zaidi

N00014-93-1-0912

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

R . . . REPORT NUMBER
Center of Excellence in Command,Control, Communications

and Intelligence
Ceorge Mason University
Fairfax VA 22030-444Y4

GMU/C3I-161-IR

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

Office of Naval Research

800 North Quincy Street

Arlington VA 22217-5660

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Progress in research on coordination in distributed decision making organizations
with variable structure is reported.The focus of this report is on CAESAR II

(for Computer Aided Evaluation of System Architectures) which is a suite of
algorithms, interfaces, and COTS software for the design, analysis, and evaluation
of decision making organizations. The suite has four major modules:Requirements
Generation; Decision Making organization architecture generation; Selection and
analysis of decision making organization; and Performance evaluation. Theoretical
and empirical results of this and previous research efforts -have been integrated
in CAESAR IT.

DTI@ QUALITY INSPECTED &

15. NUMBER OF PAGES
35

14. SUBJECT TERMS
Decision Making; Organization theory; Colored Petri Nets;

Rule based Systems; Validation and Verification 16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

" NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 739-18
298-102

TABLE OF CONTENTS

1. PROGRAM OBJECTIVE ..ottt et e e s e 2
2. STATEMENT OF WORKtiiiiiiiitiiniieiiiiiiiiirieettateiaeneiaeaneaeeeanees 2
3. RESEARCH PLAN. .. .ottt iiitititiiiisentsiseneitraaeeeaneassiesnenienes 3
4., STATUS REPORT ..ottt te et e e 3
4.1, CAESARIIL. ..ottt e st e e s s e eaeaeaens 3
4.2. SOFTWARE IMPLEMENTATIONc.ocoitiiiiiiiiiiniiienniiiieeenenaes 6
4.2.1 Lattice INPUL.......eviniiiiiiiiii i 7
4.2.2 The Lattice Algorithm..........coooiiiiiiiiiiiii 8
4.2.3 Solution Display and Candidate Selection.............coviveieneniniineanan.n. 15
4.2.4 RULER.....oitiiiiiiiiiiiiitiiei ettt seiteteta et ase e saanaaaaanees 18
4.3. ANEXAMPLEciuiiiiiiiiiitiiiiiin ittt e s s s s e daaeas 20
730 05 N B 1103 75) o g g 20
4.3.2 Architecture Generation and Solution Selectioncoeeeeiuiiiiiininn, 21
4.3.3 Decision Process and Task Allocationc.cocevvviviiiiiiiiiiiiiiieiiinn.., 25
4.3.4 Performance and Effectiveness Analysis.......coccoevviiiiiiniiiiniiiiiiininn, 31
4.4, SUMMARY ..ottt ettt et e et e e e aeaaaes 33
4.5 REFERENCEScctiiiiiiiiiiiiiiiiteriin ittt raene s an e ennaaaes 33
5.0 MEETINGSoiiiiiiiiiiiieiecencie e e PO 33
6.0 CHANGES ..ottt e ee ettt ettt e eseeen e 33
7.0 RESEARCH PERSONNEL...........c.cocesuiueurieresesesesiansesssssensasssesesenns 34
7.1 Research Personnel — Current Reporting Period...........ccooovviviiiniii. 34
7.2 Research Personnel — In Previous Reporting Periods............cocoovviiiininni. 34
7.3 Personnel Changes........oouviuiiiiiniiiniiiiiiiiiiiiiiiiieiiieineirenaenaes 34
8.0 DOCUMENTATION/PUBLICATIONS.....ccciiiiiiiiiiiiniiiiiiiineenene 34
; Accession For W
NTIS GRAAI &
DTIC TAB 0
Unannoumsced 0
Justification ..
By
|_Distribut Tond ..
Avallability Codes
fAvail and/or
Biat Spec 1&1.

N

1. PROGRAM OBJECTIVES

The objective of this research, as described in the proposal and the previous progress report, is
the investigation of several issues related to coordination in organizations. In particular, an
organization is coordinated through direct and indirect means. The direct means includes the set
of decision rules that the organization members use and the commands that they issue to each
other. Indirect means include the dissemination of information within the organization; for
example, organization members may share information or they may inform each other as to the
actions they plan to take or decisions they have made. Coordination becomes a complex issue
in variable structure organizations. Not only do the decision rules and the information
architecture have to work for each fixed structure, but the designer has to deal with the
problem, a metaproblem, of coordinating the variability. This becomes a particularly difficult
problem in organizations that exhibit substantial complexity and redundancy in their
information structure. The redundancy is necessary both for robustness and for flexibility and
reconfigurability. In order to address these problems two main tasks were defined; they are
described in the next section. In addition, some basic work in algorithms and Colored Petri
Nets needs to done to develop tools and techniques for supporting the analysis and design.

2. STATEMENT OF WORK
The statement of work, as outlined in the proposal, is given below.

Task 1: Consistency and Completeness in Distributed Decision Making

Develop a methodology for analyzing and correcting the set of decision rules used by an
organization with distributed decision making. The methodology is to be based on the
modeling of the set of decision rules in the form of a Colored Petri Net and on the
analysis of the net using S-invariant and Occurrence graphs. The ability to verify and
correct the set of decision rules has direct impact on the extent of coordination needed in
an actual organization and the resulting communication load.

Task 2: Variable Structures: Heuristic rules in the Lattice Algorithm
Constraints

Develop a methodology for considering additional constraints in the Lattice Algorithm.
Such constraints include the degrees of redundancy and complexity at the different
processing nodes (to be derived from the DFS algorithm of Andreadakis), the projected
response time of the organization, ands some user-specified constraints on connections
between decision making units. Develop a procedure for checking the validity of such
constraints and incorporate them in the Lattice Algorithm. Generalize the approach to
multilevel organizational structures and to variable structures, where variable._structures
are obtained by folding together different fixed structures. The real focus of the task is to
introduce these additional constraints as a way of containing the dimensionality problem
inherent in flexibility and reducing the coordination requirements.

Design a symbolic interface for the Lattice algorithm. The interface would have the
capability of interpreting natural language inputs entered by the user and will include
some symbolic processing. The system will generate the interconnections matrices used
as input to the Lattice algorithm. The designer would then use the various tests described
in the proposal (such as DFS algorithm) to check the validity of the interconnection
constraints and to make required modifications.

Task 3: Information Dissemination

Semi-annual progress reports are submitted in place of annual reports. The results of this
research will appear in thesis reports and in technical papers to be presented at
professional meetings and published in archival journals. In addition, oral presentations
will be given periodically as arranged with ONR.

3. RESEARCH PLAN

The research plan describes the strategy for meeting the program objectives. Specifically the
research plan is organized around a series of specific well-defined research tasks that are
appropriate for theses at master's and Ph.D. levels. Individual students are assigned to each
task under the supervision of the principle investigator. Additional staff from the C3I Center
are included in the project whenever there is a specific need for their expertise.

The focus of the task 1 is the development of a methodology for analyzing and verifying the set
of decision rules used by an organization with distributed decision making. The methodology
is based on the modeling of the decision rules in the form of Colored Petri Net and on the
analysis of the net using S-invariant properties and Occurrence graphs. The results obtained for
the two analyses, when applied to a specific form of decision rules, have been presented in the
Ph. D. thesis of A. Zaidi that was submitted as the third semi-annual report. During this
period, the methodology was implemented as part of the CAESAR II suite of tools for the
generation, analysis, and evaluation of decision making organizations (DMOs).

Task 2 has been the focus of activity during this past six-month period. The various results
(algorithms, tools, etc.) developed over the last few years were reimplemented and embedded
in CAESAR 11, the second version of the Computer Aided Evaluation of System Architectures
suite of tools. Extensive use of COTS tools and modern software engineering techniques made
it possible to enhance substantiaily the capabilities of the suite while reducing substantially the
programming effort.

4. STATUS REPORT

A full description of CAESAR II incorporates in it a status report for all tasks under this
project. Most of the results obtained under the project tasks thus far have been incorporated in
the suite. There are additional results from past research efforts that need to be reviewed, re-
expressed in the terminology and notation used in CAESAR II, coded and integrated into the
suite through the design of appropriate interfaces. This is one of the objectives for the third

year of performance.
4.1. CAESAR II

CAESAR II (Computer Aided Evaluation of System ARchitectures) is a suite of software tools
that puts together the results of more than 10 years of research in the design, modeling and
evaluation of decision making organizations. Implemented in C, ML, and C++ on a Macintosh,
it realizes interfaces between COTS applications (Design/CPN™, Design/IDEF™, Microsoft
Excel™, MATLAB™), COTS development tools (Visual Architect™, AppleScript™) and "in-
house" applications and algorithms (Lattice Algorithm, Cube Tool, RULER).

There are four major stages in CAESAR II:

Requirements Generation,
Decision Making Organization (DMO) Architecture Generation,

Selection and Analysis of DMO Architecture
Performance Evaluation

GENERATE
REQUIREMENTS

GENERATE
DMO

ARCHITECTURES

1
[NEW DESIGN

SELECT
&

ANALYZE
DMO

EVALUATE
PERFOR-
MANCE

Figure 1 The Four Stages of CAESAR II

As shown in Figure 1, CAESAR II allows the design of new organizations or the consideration
of existing designs. In this last case, only stages 3 and 4 are exercised.

Stage 1, Requirements Generation, is a heuristics process. From the definition of the mission
to be performed by the organization and the operational concept that defines how the
organization will perform the mission, the designer has to determine (1) the functionality (that
is the decision process, the operations or methods to be used by the decision makers to perform
this decision process, and the interactions among decision makers), (2) the structural
constraints, (3) the performance requirements and, (4) the scenarios consistent with the
operational concept that will be used in stage 4 for the derivation of performance measures.

The aim of the second stage is to generate a set of feasible decision making organizations that
satisfy the structural constraints specified by the designer and exhibit the desired functionality.
Organizations are represented as Petri Nets and the tools used in this stage rely on the
mathematical properties of Petri Nets. Central to this stage is the Lattice algorithm (Remy,
1986; Demaél, 1989; Zaidi, 1991) that allows to determine all admissible organizational forms
satisfying these constraints. Given a number of decision makers, the algorithm determines all
the admissible organizational forms. The innovativeness of the approach is the way it addresses
this combinatorial problem. Instead of characterizing every single solution, the complete
solution is expressed in the form of a small set of minimally connected organizations

(MINOS), a small set of rﬁaximally connected organizations (MAXOS), and the lattice
structure (the partially ordered set or Hasse diagram) of all intermediate solutions.

Two approaches can be used. In the first approach, depicted in Figure 2, the decision makers
and their operations are given. One has to define the decision maker roles and the interactions
among them, apply the Lattice algorithm, select the candidate design and then decompose the
decision rules/tasks and assign them to roles. In the second approach, shown in Figure 3, the
number of decision makers and their methods are derived from a given decision process. Their
interactions are derived and the Lattice algorithm is then applied. Finally rules are assigned to

roles.

STRUCTURAL GENERATE SELECT
CONSTRAINT
SET OF CANDIDATE
STRUCTUR

SOLUTIONS

DEFINE
RESPONSIBILITY| FEASIBLE
& ALLOCATE DMO
TASKS
CUBE TOOL

FUNCTIONALITY

GENERATE
USER-DEFINE
CONSTRAINTS

DECOMPOSE
RULE BASE
(HEURISTIC)

VALIDATE AND
VERIFY
RULE BASE |RULER

Figure 2 From Structures to Rules

The organizations forms obtained from this approach correspond to the functional architecture.
This functional architecture is then mapped to specific decision makers (human resources).
Information sources and communication systems are added to the design (i.e., the physical
architecture is used). Incorporation of the operational concept as a set of rules in the Petri Net
completes the organizational design - the Operational Architecture is obtained.

The third stage, analyze and select DMO, leads to the reduction of the set of candidate
organizations by doing a static evaluation. Different tools can be used at this stage. S-Invariants
are used to analyze the functionality by identifying key threads from sources to sinks (Valraud,
1989). Deadlocks and traps (Jin, 1994) can be identified. They correspond to parts of the
oorganization where problems can occur. Occurrence graph analysis allows the characterization
all the states reachable from an initial state and the identification of undesirable ones. Temporal
properties can be analyzed without any simulation by deriving the time equation of the net.
Finally, for variable structure organizations, the coordination constraint can be checked to see
whether each decision maker has the right combination of information to perform the desired
function in the current mode of operations. It has to be noted that this set of tools can be used
on any organization; for example, on an existing design not necessarily generated through the
first two stages of CAESAR II.

STRUCTURAL

CONSTRAINT GENERATE

SET OF CANDIDATE
SOLUTIONS STRUCTURE]

LATTICE ALGORITHM

SELECT

DEFINE
RESPONSIBILITY| FEASIBLE

& ALLOCATE DMO

GENERATE
USER-DEFINE
CONSTRAINTS

VALIDATE AND
RULER

FUNCTIONALITY

CUBE TOOL

ECOMPOS
RULE BASE
HEURISTIC)

VERIFY
RULE BASE

Figure 3 From Rules to Structures

The last stage is to evaluate the performance of the organization. This is done through
simulation of the Petri Net on a scenario defined in the first stage. Prior to the simulation, the
parameters to be varied need to be defined and the net needs to be instrumented to collect data.
To each setting of the parameters corresponds a given set of Measures of Performance attained
by the organization. When varying the parameters and executing the Petri Net for each setting,
the MOP space is derived. The Measures of Effectiveness are derived by comparing the MOPs
to the performance requirements. They constitute the basis for the analysis for the final

selection of the organization.

An example describing the overall approach is presented in Section 4.3. The next section
describes in more detail the software development effort.

4.2. SOFTWARE IMPLEMENTATION

The software development effort focused on updating existing algorithms from previous
research to take advantage of the new technologies available in computers and software
systems engineering (intensive use of graphics, processing power, extended memory
capacities, automatic code generation...). The aim was to develop a suite of software that
interact in a seamless manner for the design and evaluation of decision making organizations.
As much as possible, COTS software were used to decrease the programming effort and be
consistent with best commercial practice.

As shown in section 4.1, the Lattice Algorithm is a key element of CAESAR 1II. This algorithm
has been completely recoded in C. Interfaces to the program have been added to facilitate the
input of constraints by the architecture designer and to display graphically the results. Previous
versions of the lattice algorithm required that alphanumeric data be entered in the form of

-6-

connection matrices; it generated results in the form of vectors that needed to be processed
manually to obtain a graphical representation of the organizational structure.

Design/CPN™ is a key component of CAESAR II, not only because it is a Colored Petri net
editor and simulator, but also because it offers a functional programming language (the ML
language) that permits the use of graphical functions that can be used to generate Petri nets
automatically or read any graphical structures drawn in the program (not necessarily Petri nets).
As a result, the interfaces to the Lattice Algorithm have been implemented within the
framework of Design/CPN. In addition, programs have been written in ML to read the
structure of a Petri Net drawn in Design/CPN, to generate its incidence matrix and to compute
its time delay equation. The incidence matrix of the Petri Net is the input to several algorithms
used in the third stage of CAESAR II: S-invariants, deadlocks and traps, ... Finally, the
RULER algorithm for the validation and verification of a rule base is supported by programs
written in ML to transform a rule base expressed in First Order Predicate logic into a CPN to

conduct different types of analyses.

Microsoft Excel™ and MATLAB™ are used in the fourth stage to conduct performance

“analysis. Excel is used to process and sort the data gathered from the simulation of the Colored
Petri Net of the organization under investigation. MATLAB offers graphical capabilities to plot
data sets in 3 dimensions. "M files" have been written to read data files created in Excel and
draw Performance and Effectiveness Spaces. The different modules contained within CAESAR
II will be described now in more detail.

4.2.1 Lattice Input

The purpose of the program, a sample window of which is presented in Figure 4, is to allow
the architecture designer to specify graphically the connection constraints between the decision
makers of the organization. The organization is drawn in the Design/CPN editor. To
accomplish this, a palette that contains the different needed graphical objects can be used. By
selecting an object.in the palette, as many objects of this type as desired can be drawn in the
workspace. The environment is represented by ellipses, decision makers by rounded boxes.
Connections between decision makers and with the environment are represented by arrows
drawn by selecting the "Connector” command in the Aux(iliary) Menu. The types of
connections are specified by using the different labels contained in the palette: "inp” is for
arrows connecting the input environment to decision makers and corresponding to connections
from the environment to the Situation Assessment (SA) stage of the decision makers, "out"
corresponds to the output produced by the decision makers (connection from the Response
Selection (RS) stage of the decision makers to the environment); "asse" is used to model the
exchange of assessments between decision makers and corresponds to the connections from
the SA stage of a decision maker to the Information Fusion (IF) stage of another one.
Processed responses exchanged between decision makers are represented by the label "resp”
(connection from RS stage to IF stage). Commands issued by the decision makers are modeled
using the label "cmd" (connection from RS stage to Command Interpretation (CI) stage).
Finally, the connections from the RS stage to the SA stage are modeled using the label "ctr]".
Once these labels have been inserted in the drawing, each of them needs to be defined as a
- region of the connectors they need to be attached to. This is done by selecting the label,
choosing the Make Region item in the Aux Menu and clicking on the desired arrow. The
drawing is completed when the designer specifies which links are optional and which ones are
compulsory. Compulsory links are represented by thick arrows, optional ones by thin arrows.
The architecture designer may select a group of arrows and then change their attributes by
selecting the "Set Attributes" item in the Aux Menu and specifying the desired thickness of the
lines. Once the drawing is complete, the program written in ML is launched by selecting the

box at the bottom of the workspace and typing Command-;. This program reads the graphics
and generates a text file that contains the connection matrices, input to the Lattice Algorithm.

r

& File Edit CPN Aux Set Makeup pPage Group Teut Align
Auxiliary Node Text: Off Page Scale: 100%

By} ; R : e

PALETTE

Environment

Decision Maker

Object
YPES O

inp Interaction
out

Program to generate
asse - »

connection matrices
resp
cmd When done click here

L .
ot and type command -

Figure 4 Lattice Input Specifications

4.2.2 The Lattice Algorithm

The lattice algorithm allows the automatic generation of candidate architectures satisfying a set
of connection constraints and of structural constraints. The candidate architectures (which are
numerous) are not listed singly but gathered in lattices defined by their largest and their smallest
element: the maximally and minimally connected architectures (MINOs and MAXOs). Each
candidate architecture belongs to one of the lattices and can be defined by addition of simple
paths to the MINO or the subtraction of simple paths from the MAXO. The initial work by
Pascal Remy (1986) was limited to five decision making units because of hardware and

software (operating system) constraints. Advances in computer hardware and software have
weakened this limitations; larger organizations can be designed. More recent work by Abbas
Zaidi (1991) has overcome the theoretical limitations by introducing a layered representation of
the architecture. While the current interfaces anticipate the inclusion of hierarchically multi-
layered organizations, the algorithms that support the design have not been implemented yet in

CAESARIL

This implementation of the Lattice Algorithm takes into account additional user-defined
constraints that reduce the number of solutions by taking into consideration additional
requirements: temporal constraints, degrees of redundancy at processing nodes (SA and RS

-8-

stages) and degrees of complexity at fusion nodes (IF and CI stages), and user-defined
structural constraints expressed in logic terms. These constraints were previously considered

later in the design.

As mentioned earlier, the input of the lattice algorithm is a set of connection constraints
represented by matrices: e (input to the organization), s (output of the organization), F (SA to
IF stages), G (RS to SA stages), H (RS to IF stages), and C (RS to CI stages). Each cell of
the different matrices contains either "1" if the corresponding connection exists, "0" if it does
not, or "2" if it is optional. These matrices are generated automatically by the program "Lattice
~ Input” or can be filled or modified manually in the window displayed in Figure 5.

Number of Decision makers:
0 |0

Figure 5 Connection Matrices

The flow chart of the Lattice Algorithm is displayed in Figure 6. From the interaction
constraints, the algorithm generates the incidence matrices of two Petri nets: the Kernel Net
corresponding to the structure deduced from the connection matrices where all the optional
links are considered inactive, and the Universal Net corresponding to the structures where all
optional links are considered active. At the same time, a specific label is assigned to every place
and the fixed places that have to be included in every solution structure are determined.

In a second stage, the algorithm computes the S-invariants of the Universal Net and stores
those that contain the source place and the sink place (the simple paths) and those that
correspond to circuits (loops). The Lattice Algorithm uses a specific labeling scheme for each
place and for each transition as shown on Figure 7. The computation of the S-invariants results
in the generation of row vectors [1xm]. Each entry corresponds to a place of the Universal Net
and takes value 1 if the place is included in the S-invariant, O if it is not. This vector

representation is also used later when generating MINOs and MAXOs for structures obtained
by adding (joining) simple paths. The join operation is noted by L.

Connection

Constraints

v

Split Constraints:
Kernel Net —

Universal Net
Incidence Matrix

6 of Universal Net
Generate Incidence /Dw

Matrices of Kernel Net

and Universal Net T
& \b Labels of

places &

Petermine WS_N
fixed places

Compute :
S-invariants of ~—___

universal net .
Simple Paths

T | Determine simple /D_/—\
C:v:rs‘?r(;riits P paths of universal
net Circuits

detferrlrlun: |n§jex pcofunt pcount index of a place =
of all the places o number of simple paths containing this place

universal net

v

Generate
candidate
minos

User Defined
Structural
Constraints

Generate
candidate
maxos

‘Figure 6 Flow Chart of the Lattice Algorithm

(X oo Xi oo Xad U Yy Y Y = [(X) or), .. (Xjor Yy) ...(X; or Yy)l

where Xj, Y; € '{0,1} and X;orY;=0if X;=0and Y; =0
X; or Y; = 1 otherwise.

Thus, a structure is also represented by a vector, each entry corresponding to a place of the
Universal Net and taking value 1 if the place is included in the structure, 0 if it is not.

pli i ‘ p2i t2i p3i t3i pdi t4i ‘ p5i
I i RSi
p2ij
t5 p6
ij2 psij3
5 o _..O_. RS]
plj tj P2j 12 p3j t3] p4j 4]

Figure 7 Labeling of Places and Transitions in the Lattice Algorithm

In the third stage, MINOs are generated by adding simple paths stored in the second stage to
the Kernel Net. The number of simple paths that can be added can be limited by considering the
temporal constraints. The user can associate a delay with each transition that corresponds to the
amount of time required to perform the process it represents and specify a requirement for the
response time in the dialog window displayed in Figure 8. Since the Petri Nets handled by the
Lattice Algorithm are acyclical marked graphs, the response time of the system is equal to the
largest sum of the delays of the transitions of the S-component of the S-invariants of the Petri
Net. The delay associated with each Simple Path is then computed and those whose delay is
larger than the required response time are discarded from the set of simple paths that can be

added.

Simple Paths are added to the kernel net until the different constraints are satisfied. Five basic
structural constraints have been defined:

R1 The structure should be connected

R2 The structure must be acyclical (no loop)

R3 There exists at most one link from the RS stage of DM, to the SA, IF, CI stage of DM;:
Gij + Hij + Cij <1

-11 -

R4 Inforrﬁation Fusion takes place only at IF and CI stages. The SA stage has at most one
input with preference to external input: ¢; + Gjj < 1

RS There should not be simultaneously a connection from the SA stage of DM to the IF
stage of DM; and a connection from the RS stage of DM, to the SA stage of DM;:
Fij + Gij <1

TIME DELAYS:
9 tCi1:
5 tCi2:

10 tC13:

10 tCl4:
10 tCI5:

| Total Response Time <

Figure 8 Specification of Time Delays and Total Response Time

In addition, the algdrithm checks for user-defined structural constraints: degrees of redundancy
and of complexity and logical relations

Degrees of redundancy and of complexity

Redundancy and Complexity are two aspects of importance in the design of an organization’s
information architecture. Redundancy is related to the dissemination of information in the
organization for back-up purposes. While redundancy is desirable for survivability and
reliability, it is limited by the communications network capacity. Complexity addresses the
problem of fusion of information from different sources. The more sources, the more complex
the fusion process and the more resource consuming the process is. The architecture designer
has to deal with these two parameters and perform some tradeoffs. As more redundancy is
introduced, the fusion algorithms will be more complex or more resources will be needed.
Pascal Remy in his Master's thesis (1986) gives an interpretation of MINOs and MAXOs.
MINOs represent organization with a minimal number of interactions between DMs. They
represent not very survivable architectures because there is no redundancy to disseminate
received or generated information throughout the system. However, they represent timely
organizations. On the other hand, MAXOs represent architectures with a lot of redundancy but
that are less timely. An interesting feature for the Lattice Algorithm would be to take into
account redundancy and complexity requirements in the generation process of feasible
structures. Stamos Andreadakis (1988) describes an alternative methodology to generate
architectures. After defining basic Information Flow Paths, he introduces the concepts of

-12-

degree of Complexity at Fusion nodes and degree of Redundancy at Processing nodes.
Redundancy is related to the number of Information Flow Paths that receive data generated
from a Processing node while Complexity is related to the number of Information Flow Paths
that send data to a Fusion Node. The definition of these degrees of redundancy and complexity
is the basis for the generation of a set Data Flow Structures from which architectures can be

derived by allocating functions to decision makers.

The concept of complexity and redundancy can be applied to the four stage model of Decision
Making Unit. Situation Assessment and Response Selection stages can be considered as
Processing nodes while Information Fusion and Command Interpretation stages are Fusion
nodes. We can define SAR; (resp. RSR;) as the degree of redundancy of the SA (resp. RS)
stage of DM;. SAR; (resp. RSR;) is equal to the number of output places of the transition
representing the SA (resp. RS) stage of DM;. We can also define IFC; (resp. CIC;) as the
degree of complexity of the IF (resp. CI) stage of DM;. IFC; (resp. CICj) is equal to the
number of input places of the transition representing the IF (resp. CI) stage of DM;. If n is the
number of DMs, using the connection matrices of the Lattice Algorithm and the vector
representation of a structure s, these degrees can expressed as:

1+ Y F, if stage IFi exists o
SARi(s)=1{ , =P2i(S)+ZP2ij(S)

ZFij if stage IFi does not exist ot
j=1

RSRi(s) =s, + ZGij + Hij + Cyj = Psi(s) + ZPSi}I(S) + Psij2(s) + Psij3(s)
= B

I+ Z Fi+Hj if stage SAj exists .

IFC(s)=1{ = Pai(s) + Y Paii(s) + Psiia(s)

i=1

Y Fi+H; if stage SAj does not exist iz]

\i=]

1+Y.Cj if stage IFj exists)
CIC(s) =1 = P3i(s)+ . Psis(s)
ZCij if stage IFj does not exist o

Li=1

The architecture designer can specify ranges for the different degrees of redundancy and
complexity for the architecture he envisions in the window displayed in Figure 9. These ranges
introduce additional constraints that the Lattice algorithm checks the same way as it checks the
other constraints

User-Defined Rules

User-defined rules include different heuristics used by the architecture designer to describe
characteristics of the envisioned architecture. Some of them translate directly into setting some
cells of the connection matrices to 1 or 0. The new version of the Lattice Algorithm accepts

-13-

more complex logical rules of the kind: "if interactions Xij and Yjx exist, then the interaction
Zim exists" or "either link Xij or Yjk exists”. An approach has been developed to use

techniques from Integer Programming (IP) to translate conditions and logical relations on
interactions into constraints that can be checked by the Algorithm.

Redundancy & Complesity |

lZ]ssarls |Z| Esifcls Egcic]s_ [C] | [0 Jersricf2 |
|E__I$.Sﬂr2$ Esifon E:lscich Esrers E]

@ssarSs Esifﬁs E]Sﬁﬁi |_2_lsrsr3$ Lz_l
Essar‘ls Esifc4s @sciws msr§r4s IT—I
EssarSs Esichs [E__Iﬁcich I_‘_|srsr5$ [_!LI

Figure 9 Specifications of the Degrees of Redundancy and Complexity

In what follows, capital letters (A, B, ...) denote cells of the connection matrices e, s, F, G, H
or C. A indicates that the connection A must exist (A=1). —A indicates that the connection A
must not exist (A=0). User defined constraints can then be expressed in terms of logical

formulae that use the operators = (not), A (and), v (or), and — (implies / if-then). Any logical
formula can be transformed into a Conjunctive Normal Form where the formula is expressed as

the conjunction (operator A) of disjunctions (operator v). For example AVvB)A(RA VO A
(B v =D v E) is a conjunctive normal form because expressions containing only operators v

are connected with operators A. Each of the disjunctions of the resulting expression can then be
processed independently. A disjunction contains a finite number (m) of positive literals and a
finite number (n) of negative literals. Its generic form is:

“A] v "lA2 V..V "lAn A\ An+l v An+2 V..V An+m
which can be rewritten:

(AjAAA o AAY = (Apsl VA2V oo V Apym)

Any user defined constraints can be expressed in terms of rules of this type. In previous semi
annual reports, we used an Integer Programming formulation to derive an equation that can be
included in the set of constraints checked by the Lattice Algorithm:

Al +A)+ ... +A-n+1 < Apy +Apo+ .+ Apim

-14-

If Aj A Az A ... A Ay is true then Ai = 1 for all i and the equation becomes :
] S An+l + An+2 + ...+ An+m,
requiring that at least one of the Ay, = 1.

If Aj A Az A ... A Ay is false then there exists i in {1, ..., n} such that A; = 0 and therefore:
Al +Ar+ . +A-n+1 < 0 Apy + Apa+ oo+ A
and the Apj can take any values.

Constraints Checking
The constraints are checked on the vector representation of the current structures. Constraint

R1 is true by construction. The addition of simple paths from the source place to the sink place
ensures that there exists a non directed path from any node to any other node. Constraint R2 is
checked by verifying that any of the circuits is not a subnet of the current structure. The same
approach is used to ensure that any simple path that violates the time requirements is not
contained in the current structure because the addition of several allowable simple paths can
result in the presence of an undesirable simple path. The basic constraints R3, R4 and RS, the
constraints for redundancy and complexity and the constraints derived from user-defined
logical statements are all expressed in terms of inequalities. These constraints are checked in
identical manner by applying the inequalities on the appropriate entries of the vector
representation of the current structure.

The flow chart for the generation of MINOs is displayed on Figure 10. -

A depth first strategy is used to add simple paths. At each stage, the fixed place not included in
the current structure and which is contained in the fewest number of simple paths is identified.
The first simple path is added and the process continues until a MINO is found, i.e., all the
constraints are satisfied and the structure contains all the fixed places. Before saving the
MINO, the algorithm checks whether the new MINO is equal to a previously found MINO.
The algorithm backtracks and adds the next simple path to the previous structure.

In a fourth stage, MAXOs are generated by removing simple paths from the Universal Net until
none of the constraints are violated. The approach used is similar to the one used to generate
the MINOs, the only difference being that the algorithm identifies the non-fixed places that are
the reasons for the violation of constraints and that lead to the simple path that should be

remove.

The oufput of the Lattice Algorithm is a text file that can be read by the program "Solution
Display and Candidate Selection" described next.

4.2.3 Solution Display and Candidate Selection

The aim of this program is to display graphically the solution generated by the Lattice
Algorithm and to construct the candidate solutions. Implemented in the framework of
Design/CPN, it consists of five different modules written in ML that can be launched by
selecting the appropriate module and typing “command - ;.

The first module reads the output file of the Lattice Algorithm and the file containing the
invariants of the universal net. It reads the different MINOs and MAXOs, determines which

MINOs are subnets of the different MAXOs and draws on a new page, as shown on Figure
11, on two different lines circle nodes that represent the MINOS and the MAXOs and connects

the nodes with an arrow to indicate that the corresponding MINO is a subnet of the
corresponding MAXO. Each MINO-MAXO pair connected by an arrow corresponds to the
boundaries of the Hasse diagram bounded by the MINO and the MAXO.

-15-

i:=0
n0=0

v

Scan fixed places
{3 pmin=piaces with smallest pcount |—

jmax[il=pcount(pmin)

Find simple paths jfi}
containing pmin
iz=i+1

v

comstruct
ni=mi-1 U spijli]

v

check structural
constraints on i

ves / structural \ no
constraints
Jl \ violated ? / J[

User Defined
Structural
Constraints

next jfi] look for fixed
places

any fixed
places left
out?

no yes

equal to a
previously
ound mino?,

i:=i-1 no

yes

Store Discard

Figure 10 Flow Chart of MINOs Generation

The second module draws the Petri Nets of the MINOs and MAXOs. When launched, it
displays the page drawn with the first module and asks the user to click on the node
corresponding to MINO or MAXO he wants. The module then creates a new page and draws
automatically the Petri Net of the selected MINO or MAXO. When the drawing is completed,

-16 -

the user is asked whether he wants to have another net drawn or not. Answering "no" leaves
the module, while answering “yes” starts the process all over again. If the selected MINO or
MAZXO has already been drawn, the page containing the net is displayed. The generated Petri
Nets are ready for simulation or can be edited with the Design/CPN Editor. To simulate one of
the generated Petri Net, the user needs only to specify the corresponding page as prime by
using the "Mode Attributes" command in the "Set” menu in Design/CPN and to switch to the

simulator.

The three last modules construct a candidate structure bounded by a MINO and a MAXO.
When the third module is launched, the user is asked to select a pair MINO-MAXO in which
the MINO is a subnet of the MAXO. A new page is created and the MAXO is drawn with thin
lines. The places, transitions, and interconnecting arcs of the MINO are then displayed with
thick lines. This drawing constitutes the workspace on which simple paths will be added to
design the candidate solution, as shown on Figure 12.

r @ File Edit CPN RAux Set Makeup Page Group Texnt Align
Auxiliary Node Text: Off Page Scale: 1

r
To start, dick here
and type command - ;
x
)

| L'a =

To look at the boudaries

of the solution set

(display of minos and maxos)
dick here and type command - ;

To pick a solution bounded
by a mino and a maxo
dlick here and type command - ;

¢
To look at a path to add and add it

dick here and type command - ;

i

r
If you want to backtrack,
dick here and type command - ;

X%

A Figure 11 Display of Solutions
The fourth module determines which simple paths need to be added to the MINO to get to the

MAXO. The user is informed of the number of simple paths that can be added and asked to
select one of them. The selected simple path is then displayed on the net in bold gray and the

-17 -

" & File Edit CPN RAux Set Makeup Page Group Tent Align 3:19PM @8 (Y X
| Auxiliary Node Text: Off Page Scale: 100%

Figure 12 Workspace for Candidate Selection
(the command window has been hidden)

user is asked whether he wants this path to be added. If the answer is yes, the resulting net is
displayed in black thick lines. If the answer is no, the drawing returns to its previous stage. A
new simple path can then be added by launching again the fourth module. A solution is thus
constructed by using these modules repetitively to visualize the different simple paths that can
be added and add only the desired ones. At any time during the design process, the user can
backtrack to a previous solution by launching the fifth module. The program keeps in memory
the intermediate solutions. When the candidate solution has been determined, the user can
delete the nodes that are represented in thin lines. The resulting Petri Net is ready for

stmulation.
4.2.4 RULER

A methodology for the validation and verification (V&V) of decision making rules has been
proposed and reported in previous progress reports. The approach taken in RULER (RULe
Evaluation Routine) is based on viewing a rule base as an organization of information that
flows from one process (rule) to another. Since Petri Nets provide a powerful modeling and
analysis tool for information flow structures, the methodology transforms a set of decision
rules into an equivalent Petri Net representation. The static and dynamic properties of the graph

-18 -

are shown to reveal patterns of Petri Net structures that correspond to the problematic cases.
For a detailed description of the algorithms and techniques used in RULER, see Zaidi (1994).

Figure 13 represents the three main modules (shown as boxes in the figure) of RULER. The
figure also shows all the inputs and outputs of these processes. Next to each are shown all the
algorithms and techniques that constitute the module.

Rule Set
(Text File)

'

Construction of the
Petri Net representation
of the Rule Set

PN

Conversion of PN to Marked PN
FPSO and FPSI Algorithms
Calculation of Incidence Matrix
Calculation of S-Invariants

Reported Incompleteness, %ra;r:rl; Algorithms for the Detection of

Inconsistent, and Circular
Cases

User_Defined
Sets of S Static Analysis

Mutually Exclusive Concepts

+ Conversion of PN to Y-Net

« Generation of Occurrence Graphs

* Search Algorithms for the Detection of
Errors

Dynamic Analysis

Reported Redundant,
Subsume, and
Inconsistent Cases

Figure 13 Main Modules of RULER

Module 1: Construction of the Petri Net Representation

This module has been implemented in Design CPN™ in its entirety. The program
requires an input text file that can be imported in Design CPN™ using its 'Load Text'
command. The program can be used to construct Petri Nets for both Propositional and
First-Order Predicate systems.

-19-

Module 2: Static Analysis

The following algorithms have been implemented in Design CPN™:

. Conversion of PN to Marked Graph PN
. FPSO and FPSI Algorithms ‘
. Construction of Incidence Matrix

The same S-Invariant algorithm implemented for the Lattice algorithm is used to
calculate the S-Invariants, therefore, RULER does not have its own implementation of

this process.

The remaining algorithms and analysis tools have not been implemented yet and,
therefore, are carried out manually.Their implementation is planned during the next few

months.
Module 2: Dynamic Analysis

This module has yet to be implemented. The dynamic analysis presently is carried out
by first instrumenting the PN manually and then the occurrence graph is automatically
constructed by theOG Analyser™. The erroneous states are searched with the help of
commands provided in the software.

These different programs have been used in the illustrative example described in the next
section.

43. AN EXAMPLE

The CAESAR II approach is illustrated through an example: the design of a Navy Tactical
Command and Control Center. This example is a simplified version of the example of Remy

and Levis (1988).

4.3.1 Description

The organization under consideration faces air, surface and underwater threats. It has 5
decision makers: DM; and DM, act as the sensors of the organization (Sonar Operator (SO)
and Radar Operator (RO), for example). They both receive information from the external
environment (threat detection). DM, can detect air and surface threats, while DM; can detect
surface and underwater threats. DM; and DM, do not share their assessment. DM; has to send
this information to DM3 who acts as the Commander in Chief (CC). DM, is not obliged to
send his response to DMs. Finally, DMy, the Anti-Air Warfare Commander (AAWC) and
DMs, the Anti-Submarine Warfare Commander (ASWC) produce the organization's response
(firing of missiles for AAWC or torpedoes and depth charges for ASWC). DMy deals with air
and surface threats. DMs aims at underwater and surface threats. They receive orders from the
coordinator DM and may receive information from DM, and DM;. They may also share their
results. One can see that DM; and DM, on one side and DMy and DM5 on the other have
overlapping area of responsibilities. The role of DM; as coordinator is therefore critical for the
correct execution of the mission.

-20-

4.3.2 Architecture Generation and Solution Selection

The graphical representation of this description of the organization, as done using the program
"Lattice Input,” is displayed in Figure 14. The five decision makers are represented as rounded
boxes. The connections between them and with the environment have been represented by
arrows. The appropriate labels (asse, cmd or ctrl) have been associated with the arcs. Finally,
the thickness of these arrows determine if the link is optional or compulsory. For example, the
requirement that the CC has to send a command to the AAWC is represented by a thick arrow
from the rounded box representing the CC to the rounded box representing the AAWC with the
label "cmd" attached to it.

he CC receives data

@ File Edit CPN Aux Set Make ign
Auxiliary Node Text: Off B Scale: 100%

— from the Radar Operator
New# === and optionally from the mﬁg
A

.

The CC always sends Y
a command to AAWC |
and may send one
o ASWC ‘

out

Radar and Sonar
Operators sense
the environment

w

AAWC and ASWC

inp .
may receive data
out
from the sensor
aese operators
resp
fhen done click h .
omd and type comund - ; AAWC and ASWC
ot act upon the

environment

Figure 14 Connection Specifications for the Example

The connection matrices generated by the program are shown in Figure 15. All the optional
links result in "2's " being placed in the corresponding cells of the matrices. The compulsory
links are specified by "1's" in the appropriate cells. Links that should not exist correspond to
the "0's". The specifications result in the matrices F (SA->IF) and G (RS->SA) whose cells

contain only 0’s.

221 -

Number of Decision makers: 3

e[i oo o] (ox)@ oo [t [1]

| F

G:

Figure 15 Connection Matrices for the Example

The set of solutions generated by the Lattice Algorithm is bounded by one MAXO, M1, and
five MINOs, m1 to m5, and can be characterized by Figure 16. Each arrow connecting each
MINO to the MAXO corresponds to a lattice in which every node is a solution. Each solution is
obtained by adding simple paths to the MINO or subtracting simple paths from the MAXO. To
continue the design process, the pair MINO m5 - MAXO M1 has been selected.

SN

ORORORONO

Figure 16 Characterization of the set of solutions

Figure 17 represents the Hasse Diagram of the lattice bounded by MINO m5 and MAXO MI.
The example has been chosen so that all the solutions could be shown on this figure. In a more
general case, the solutions bounded by a MINO and a MAXO can be very numerous. The
numbers inside every node correspond to the simple paths of the corresponding organization.
Thus, MINO m5 is made of the combination of paths #3, #4, #7, and #8. The subtraction of

-22.

any of these paths violates the connectivity and structural constraints. MAXO M1 is obtained
by adding to MINO m5 simple paths #1, #2, #5 and #6. Addition of any other simple path (if
any existed) would result in the violation of the connectivity and structural constraints. Any
intermediate solution is obtained by adding a subset of these paths to the MINO m5.

MAXO M1
12345678

NN

1234578 1345678 1234678 2345678

il o
134578 123478 134678 234578 345678 234678
13478 34578 23478 34678

MINO m5
3478

Figure 17 Hasse Diagram of the solutions bounded by MINO m5 and MAXO M1
The Petri Net representation of m5 and M1 are displayed on Figure 18 and 19.

As an example, Figure 20 represents the organization of interest obtained by adding simple
paths #1 and #6 to the MINO or subtracting simple paths #2 and #5 from the MAXO. It
corresponds to the organization where ASWC and AAWC receive a command from the CC,
and where ASWC receives every processed information from the Sonar Operator and AAWC
receives every processed information from the Radar Operator.

Once the structure has been determined, the decision process to be carried out by the

organization needs to be defined and validated so that tasks can be derived and allocated to the
different decision makers.

-23-

11

cH RS1

- &

Ci2 RS2

Ci3

:
&4

, 6
RS3 . out
-

22

Cl4 RS414

23

Ci5 S5 |

Figure 18 Petri Net Representation of MINO m5

6 1
IF1 _Db._p ci RS1

o &

IF2 Ci2 RS2

6
IF3 _Dé_y ci3 RAS3 out _96
[~

0
IF4 clia RSa| |
1 0
IF5 cis

Figure 19 Petri Net'Representation of MAXO M1

|4

RS5

¢

-4 -

1

A1 IF1 cn

Cl2 —D@—D RS2

o Ox

A2 IF2

> ¢

inp IF3

>

1

2

3 6

ci3 RS3 out
-t
22
‘ 4 ‘
IF4 cl4 RS4} |
S5

23

0 5
IF5 CI5

Figure 20 Petri Net representation of the Selected Organization

% 35

4.3.3 Decision Process and Task Allocation

Definition Decision Process
Given the feasible valid input space U and the set of valid responses ¥, the Decision

Process I associated with an organization is defined as:
rruv->vY

Figure 21 presents a schematic representation of a decision process, where uj € U (the set of

basic inputs) and y; € P.

U —p >y, :
—» >
. I .
I >y,

Figure 21 Decision Process

The decision making process I" of an organization can be viewed as a set of decision making
rules {r;}, where each rule maps a valid input vector into a valid output response, as depicted

-25-

in Figure 22. Using the terminblogy of Propositional Calculus (PC) a rule r in Figure 22 takes
the form: ,

U & U2 &..-& Ui 2 Yj

1

>y

Figure 22 Decision Making Rules

The decision making rules of the type shown in Figure 22 represent the generic functionality

of a decision process. However, such a partitioning of the set I may not be realizable when the
rules are assigned to individual physical systems in the physical architecture of an organization.
This could be due to the inaccessibility of certain inputs to the systems required to process
them, sharing of information between two distant systems to select a response, lack of problem
solving abilities at a node that has access to inputs, and so on. This, in turn, leads to the
redefinition of the decision rules into a form that takes into consideration the constraints and
requirements put forth by the physical architecture of the organization. Such a redefinition is
termed as Decomposition of rules. Therefore, in order to assign the functionality present in the
decision process to the individual decision makers in the organization, the original set of
decision rules is required to be decomposed. The manner in which these rules are obtained,
decomposed, and eventually partitioned across the decision making entities (human and
machine) can introduce inconsistencies, incompleteness, redundancies, as well as problems in
coordination.

In an organization, even if its physical and coordination structures are feasible, the presence of
such problems in the set of rules assigned to decision making entities can result in poor
performance and unreliable system response. Some of the examples of incompleteness and
inconsistencies in the rule base associated with the Navy Tactical Command and Control Center

are shown in Table 1.

Table 1 Examples of Incompleteness and Inconsistency in the Rule Base Associated with
Navy Tactical Center

resulting in deadlocks

Relevant information or
data not used in decision
making resulting in poor
performance

INCOMPLETENESS INCONSISTENCY
Rules requiring Incorrectly ID friendlies
inaccessible inputs as threats resulting in

friendly fire

Correctly ID hostiles but
produce no action

Correctly ID hostile but
fire wrong weapon

-26 -

As part of the example, the RULER algorithm is applied to the rule base associated with the
Navy Tactical Command and Control Center. The inputs (basic concepts) and outputs (main
concepts) of the system's decision process are listed in Table 2.

Table 2 Inputs and Outputs to the Rule Base Associated with Navy Tactical Command and
Control Center :

INPUTS OUTPUTS

Radar: {rl, r2, r3} Fire_SSM

Sonar Sensor: {pl, p2, p3} | Fire_SAM
Database: {dbl, db2, ...} Fire_Torpedo
Intel: {intell, intel2, ...} Fire_DepthCharge
No_Action

The syntax of RULER requires that the input rules be expressed as statements in formal logic.
An example of such a representation is presented below:

Example

Let a decision rule be expressed in a descriptive IF-THEN form as:

IF
the assessed information from sonar operator is Pi and form radar operator is Rj

THEN
the incoming object is an enemy vessel and ASW is commanded to attack

This rule in RULER syntax will be expressed as:
Pi & Rj —> Enemy_Vessel & Attack_ASW

The entire set of decision rules (45 rules) associated with the illustrative example of Navy
Tactical Command and Control Center is given in Table 3.

In order to verify the correctness of the given rule base, RULER first transforms it to an
equivalent Petri Net representation. An algorithm implemented on Design CPN™ using ML™
" automatically generates a Petri Net from a text file containing the decision rules in the
conditional form presented. A slightly edited version of the Petri Net so obtained is shown in
Figure 23. All the inputs (basic concepts) and the outputs (main concepts) of the decision
process are shown aggregated into two input and output places. This aggregation of inputs and
outputs is required to identify the incompleteness present in the rule set.

227 -

Table 3 Rule Set Associated with the Naval Tactical Command and Control Center

rl->RI10

r2->R20

r3->R30

ri&r2->RI12

pl->PI0

p2->P20

p3->P30

pl&p2->PI2
P10&R10;P20&R10;P10&R20->Unknown_Vessel
10. PI2&R10;P12&R20->Friendly_Vessel

11. P20&R20:P10&RI12;P20&R12->Enemy_Vessel

12. P10&R30->Enemy_Sub

13. P20&R30->Unknown_Sub

14. PI2&R30->Friendly_Sub

15. P30&RI10->Enemy_Plane

16. P30&R20->Friendly_Plane

17. P30&RI12->Neutral_Plane

18. Unknown_Vessel&dbl->Alert AAW&Alert_ ASW
19. Unknown_Vessel&db2 &intell->Attack_AAW&Arttack_ASW
20. Unknown_Vessel&db3->No_Action

21. Friendly_Vessel->No_Action

22. Enemy_Vessel&dbl->Attack AAW&Attack_ASW
23. Friendly_Sub->No_Action

24. Neutral_Sub&db2&intel2->Attack_ASW

25. Neutral_Sub&db3->Alert_ASW

26. Neutral_Subd&db4->No_Action

27. Enemy_Sub&db3->Attack_ASW

28. Enemy_Sub&intel3->Alert_ASW

29. Enemy_Plane&db5->Alert_AAW

30. Enemy_Plane&intel3->Attack_AAW

31. Friendly_Plane->No_Action

32. Neutral_Plane&db6 &intel2->Attack_AAW

33. Neutral_Plane&db7->Alert_AAW

34. Neutral_Plane&intel3->Alert_AAW

35. Neutral_Plane&db4->No_Action

36. RIO&Alert AAW;R12&Alert_AAW->Prepare_Launch
37. RI0&Attack_AAW:RI12&Attack_AAW->Fire_SAM
38. P10&Sub_Threat&Attack_ASW->Fire_DepthCharge
39. P10&Surface_Threat&Attack_ASW->F ire_Torpedo
40. P10&Sub_Threat&Alert_ASW->Prepare_DepthCharge
41. P10&Surface_Threat&Alert_ASW->Prepare_Torpedo
42. P20&Sub_Threat&Attack_ASW->Fire_DepthCharge
43. P20&Surface_Threat&Attack_ASW->F ire_Torpedo
44. P20&Sub_Threat&Alert_ASW->Prepare_DepthCharge
45. P20&Surface_Threat&Alert_ASW->Prepare_Torpedo

NN S

-28 -

Fire_Torpedo
<
)
A"’:ﬂ‘;"

\} X S
O '_l'l‘;'{\’mn‘n.@x
prremdiA VoL \’l@‘:‘d\.—'\‘-““ VA <
?“:;1‘\:“%:)\‘}% 3 thCh
ETS/ IR AN <] FRBepthCharghg
SN2 s Q.!Bv— fo
— W‘m Prepang DebthGha

D

i
N

i
!L
1 L
[
g

]
5
r

e
iy
[y»::

k)
rz

Figure 23 Petri Net Representation of the Rule Set

The application of RULER resulted in the following reported incompleteness and
inconsistencies.

Reported Incompleteness
The following rules are reported as incomplete:

P10 & Surface_Threat & Attack ASW —> Fire_Torpedo

P10 & Subsurface_Threat & Attack_ASW —> Fire_DepthCharge
P10 & Surface_Threat & Alert_ASW —> Prepare_Torpedo
P10 & Subsurface_Threat & Alert_ASW —> Prepare_DepthCharge

The reported incompleteness is due to the missing rules conveying the nature of the incoming
threat to the decision rules that are required to act upon it. In the rule set the concepts
Surface_Threat and Subsurface_Threat appear as places with only outputs; they are used to
make decisions but can not be inferred from the sensory inputs. Although the required
information is available through the sensory inputs, but it is not explicitly represented in the
rule set. And, it is this lack of explicit representation that causes the incompleteness reported by

RULER.
Reported Inconsistency

The following rules are reported inconsistent:

. Enemy_Vessel & dbl —> Attack_ASW & Attack_AAW

=29 -

. (R10 or R12) & Attack_AAW —> Fire_SAM

The reported inconsistency is due to the fact that the first rule conveys 'Attack’ command to
AAW based on identification of an incoming 'Enemy_Vessel', and the second rule acts upon
this command with the firing of a wrong weapon (SAM).

Once the set of decision rules is checked for correctness, it is partitioned into several subsets
where each set is assigned to an individual decision making entity in the organization. The
process of assigning rules to roles is a heuristic process and requires information about the
phyisical structure of the organization and a mapping between the capabilites of the individual
decision making units to the functionality depicted by the decision process. Figure 24
represents a possible assignment of rules to five decision makers in the illustration of Navy

Tactical Command and Control Center.

The complete executable model of the organization is obtained by implementing the rules into
code segments attached to the transitions. It requires the definition of color sets and variables
gathered in the global declaration node and the updating of the arc expressions. This process is
not automated and has to be done manually in the Design/CPN editor. The model thus
constructed can then be evaluated with the different analysis tools available in the third stage of
CAESAR 11 and/or simulated to check that it exhibits the appropriate behavior.

' 1 '-' repare_Torpedo >

Co—+

Q‘

o\< \

CE—F D

@R+ G SN ;
: h@'@"“ 07 58

w '] ;sﬁ .
0 ,‘é
A

P

Figure 24 Rule Allocation

-30 -

4.3.4 Performance and Effectiveness Analysis

To evaluate performance, a scenario needs to be defined and implemented as an initial marking
of the source place. The parameters to be varied need also to be defined. These parameters can
be either the presence of resources, the response time of some processes, the setting of
decision strategies. In the example, the parameter of choice is the decision strategy, that is the
probability to choose an algorithm in favor of another for the execution of a given process. The
Measures of Performance (MOPs) of interest need to be defined. In the example, three MOPs
were chosen: response time, accuracy (the expected cost for producing the organization
response which is different from the desired response), and throughput rate (the number of
tasks that can be executed during a certain amount of time). The model needs to be modified
and instrumented to collect data that allow to compute the measures of performance. Sink
places at appropriate locations in the Colored Petri Net are added to keep track of what is going

on .

The model is simulated and data are collected for each setting of the parameters. Microsoft
Excel™ is used to process the raw data and compute the MOPs reached for each of the settings.
The Performance Locus is plotted in three dimensions in the Performance Space using
MATLAB™, The performance space for the example is displayed on Figure 25.

To analyze whether the organization satisfies the requirement, the performance attained by the
organization needs to be compared to the performance requirements. These performance
requirements are expressed as inequalities: "the response time has to be less than 14 s". If the
performance requirements are independent of each other, the requirement locus can be
represented as a cube in the performance space, as shown in Figure 25. The effectiveness of
the organization is then related to the extent to which the Performance locus is included in the
Requirements locus. A measure of Effectiveness can be defined as:

moE = L 01

P

and can be used as a sound basis for comparing several candidate structures.

To complete the analysis, it is interesting to assess the sensitivity of the Effectiveness to
requirements. By varying the levels of the performance requirements at different levels, and
measuring the MOESs, the graph displayed on Figure 26 is obtained. It provides some useful
information: a slight variation in the response time requirements from 13 s to 14 s result in a
steep variation of the effectiveness while a variation of the requirements in accuracy introduces -
a smooth variation of the effectiveness. This type of analysis constitutes a sound technical basis

for a refinement of the performance requirements.

231 -

Throughput Rate

0.074
0.0738
0.0736
0.0734

0.0732 4

0.073 J
0.5

0.8

1

Effectiveness

0.6 J

0.4

L

0.2 3

0

pa

Performance Space

1.5

13.55

13.5

Accuracy Response Time

Figure 25 Performance and Requirements Loci

Effectiveness Space

0‘0“0’.
A T e I A N
'ﬁ”"o"“&‘%“. “ “-0 S

Accuracy Response Time

Figure 26 Sensitivity of Effectiveness to Requirements

-32-

4.4. SUMMARY

The emphasis during the second year of the project has been on fundamental research - the
completion of A. Zaidi’s PhD thesis - and the integration of the work into a suite of tools,
called CAESAR 11, that can be used to support basic research as well as transition the research
results into the 6.2 and 6.3 areas.

4.5 REFERENCES

Andreadakis, S. K. (1988). Analysis and Synthesis of Decision-Making Organizations. LIDS-
TH-1740, Laboratory for Information and Decision Systems, MIT, Cambridge, MA.

Demaél, J. (1989). On the generation of Variable Structure Distributed Architectures. LIDS-
TH-1869, Laboratory for Information and Decision Systems, MIT, Cambridge, MA.

Jin, Zhenyi (1994). Deadlock and Trap Analysis in Petri Nets. MS Thesis, Systems
Engineering Department, George Mason University, Fairfax, VA, May 1994.

- Lu, Zhuo (1992). Coordination in Distributed Intelligent Systems. GMU/C31-120-TH, Center
of Excellence in Command, Control, Communications, and Intelligence, George Mason
University, Fairfax, VA.

Remy P. (1986). On the Generation of Organizational Architectures Using Petri Nets. LIDS-
TH-1630, Laboratory for Information and Decision Systems, MIT, Cambridge, MA.

Remy P. and Levis A.H. (1988). On the Generation of Organizational Architectures Using
Petri Nets. in Advances in Petri Nets 1988, Lecture Notes in Computer Science, G.
Rozenberg Ed. Springer Verlag, Berlin, Germany.

Valraud F. (1989). Evaluation of Functionality in Distributed Systems. LIDS-TH-1868,
Laboratory for Information and Decision Systems, MIT, Cambridge, MA.

Zaidi A. (1991). On the Generation of Multilevel Distributed Intelligent Systems Using Petri
Nets. M. S. Thesis, Report GMU/C3I-112-TH, Center of Excellence in Command,
Control, Communications, and Intelligence, George Mason University, Fairfax, VA.

Zaidi A. (1994). Validation and Verification of Decision Making Rules. Ph. D. Dissertation,
Center of Excellence in Command, Control, Communications, and Intelligence, Report
GMU/C3I-155-TH, George Mason University, Fairfax, VA.

5.0 MEETINGS

. Dr. Zaidi defended successfully his Ph. D. thesis in December 1994. -

. Drs. Levis and Zaidi and Mr. D. Perdu attended the 1995 Symposium on C2
Research and Technology, National Defense University, Washington DC.

. Drs. Levis and Zaidi visited Alphatech, Inc. in Burlington, MA to discuss
collaboration during the third year of the project.

. Drs. Levis and Zaidi attended the 6th IFAC Man-Machine Systems Symposium
at MIT, Cambridge, MA and presented a paper based on Dr. Zaidi’s thesis.

6.0 CHANGES

No changes in the scope of work of this project.

-33-

7.0 RESEARCH PERSONNEL

7.1 Research Personnel — Current Reporting Period

Prof. Alexander H. Levis Principal Investigator

Prof. Abbas K. Zaidi Postdoctoral Fellow

Mr. Didier M. Perdu Graduate Student (Ph.D.)
Mr. Eric Tsibertzopoulos Graduate Res. Assistant (MS)
Ms. Etsiwohot Dinka Undergraduate Student

7.2 Research Personnel — In Previous Reporting Periods

Prof. K. C. Chang

Mr. Abbas Zaidi . Graduate Res. Assistant (Ph.D.)
Ms. Jenny Jin Graduate Res. Assistant (MS)
Ms. Hedy Rashba Graduate Res. Assistant

Ms. Azar Sadigh Graduate Res. Assistant

Ms. Cynthia Johnson Graphics Designer

7.3 Personnel Changes

Ms. Dinka joined the project as junior programmer and is working on the implementation of the
interfaces in CAESAR IL

Mr. Eric Tsibertzopoulos joined the project in June as a Graduate Research Assistant. He will
be doing his Master’s thesis in this area.

Dr. Zaidi completed his Ph.D dissertation in December of 1994 and then continued to work on
the project as a postdoctoral fellow.

.0 DOCUMENTATION/PUBLICATIONS

@

Hedy L. Rashba, “Problems in Concurrency and Coordination in Decision Making
Organizations,” Report GMU/C31-143-R, C3I Center, George Mason University,
Fairfax, VA, September 1993.

-

2. A. H. Levis, B. Hu and N. Moray, “Task Allocation Models and Discrete Event Systems,”
Automatica, Vol. 30, No. 2, Feb. 1994.

3. G. Johannsen, A. H. Levis and H. Stassen, “Theoretical Problems in Man-Machine
Systems and their Experimental Validation,” Automatica, Vol. 30, No. 2, Feb. 1994.
. AY .

4. T. Zhang and A. H. quis,\ *“Colored Invariants in Predicate Transition Nets,” Proc.
First International Symposium of Young Investigators on Information/ Computer/
Control (ISYI' 94) Beijing, China, February 1994.

5. J. J. Demagl and A. H. Levis, “On Generating Variable Structure Architectures for

Decision Making Systems,” Information and Decision Technologies, vol. 19, 1994,
pp- 233-255.

6. Zhenyi Jin, “Deadlock and Trap Analysis in Petri Nets,” MS Thesis, Systems Engineering
Department, George Mason University, Fairfax, VA, May 1994.

-34 -

7. D. M. Perdu, C. Spohnholtz and A. H. Levis, “Modeling Information Pull in the
Copernicus Architecture using Colored Petri Nets,” Proc. 1994 Symposium on C2
Research, SAIC, McLean, VA. June 1994

8. A.H. Levis and L. S. Levis, Eds. Science of Command and Control. Part IIl: Coping with
Change. AFCEA International Press, Fairfax, VA, November, 1994.

9. A. K. Zaidi, “Validation and Verification of Decision Making Rules,” Ph. D. Thesis,
Center of Excellence in Command, Control, Communications, and Intelligence, Report
GMU/C3I-155-TH, George Mason University, Fairfax, VA. December 1994.

10. A. H. Levis, “Human Interaction with Decision Aids: A Mathematical Approach,” in
Human /Technology Interaction in Complex Systems, Vol. 7, E. B. Rouse, Ed., JAI
Press, 1995.

11. Zhenyi Jin, A. K. Zaidi, and A. H. Levis, “Deadlock and Trap Analysis in Petri Nets,”
Proc. 1995 Symposium on Command and Control Research and Technology, National
Defense University, June 1995

12. A. K. Zaidi and A. H. Levis, “Rule Decomposition and Validation for Distributed
Decision Making,” Proc. 1995 Symposium on Command and Control Research and
Technology, National Defense University, June 1995.

13. A. K. Zaidi and A. H. Levis, “On Verifying Inferences in an Influence Net,” Proc. 1995
Symposium on Command and Control Research and Technology, National Defense
University, June 1995.

14. A. K. Zaidi and A. H. Levis, “Validation and Verification of Decision Making Rules,”
Proc. 6th IFAC Symp. on Man Machine Systems, MIT, Cambridge, MA , June 1995.

-35-

